An Integrated Solution for Snoring Sound Classification Using Bhattacharyya Distance Based GMM Supervectors with SVM, Feature Selection with Random Forest and Spectrogram with CNN

نویسندگان

  • Tin Lay Nwe
  • Tran Huy Dat
  • Wen Zheng Terence Ng
  • Bin Ma
چکیده

Snoring is caused by the narrowing of the upper airway and it is excited by different locations within the upper airways. This irregularity could lead to the presence of Obstructive Sleep Apnea Syndrome (OSAS). Diagnosis of OSAS could therefore be made by snoring sound analysis. This paper proposes the novel method to automatically classify snoring sounds by their excitation locations for ComParE2017 challenge. We propose 3 sub-systems for classification. In the first system, we propose to integrate Bhattacharyya distance based Gaussian Mixture Model (GMM) supervectors to a set of static features provided by ComParE2017 challenge. The Bhattacharyya distance based GMM supervectors characterize the spectral dissimilarity measure among snore sounds excited by different locations. And, we employ Support Vector Machine (SVM) for classification. In the second system, we perform feature selection on static features provided by the challenge and conduct classification using Random Forest. In the third system, we extract spectrogram from audio and employ Convolutional Neural Network (CNN) for snore sound classification. Then, we fuse 3 sub-systems to produce final classification results. The experimental results show that the proposed system performs better than the challenge baseline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An 'End-to-Evolution' Hybrid Approach for Snore Sound Classification

Whilst snoring itself is usually not harmful to a person’s health, it can be an indication of Obstructive Sleep Apnoea (OSA), a serious sleep-related disorder. As a result, studies into using snoring as acoustic based marker of OSA are gaining in popularity. Motivated by this, the INTERSPEECH 2017 ComParE Snoring sub-challenge requires classification from which areas in the upper airways differ...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

Optimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm

Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminat...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017